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Abstract

In a finite volume CFD method for unsteady flow fluxes of mass, momentum and energy are exchanged between cells
over a series of small time steps. The conventional approach, which we will refer to as direction decoupling, is to estimate
fluxes across interfaces in a regular array of cells by using a one-dimensional flux expression based on the component of
flow velocity normal to the interface between cells. This means that fluxes cannot be exchanged between diagonally adja-
cent cells since they share no cell interface, even if the local flow conditions dictate that the fluxes should flow diagonally.
The direction decoupling imposed by the numerical method requires that the fluxes reach a diagonally adjacent cell in two
time-steps.

To evaluate the effects of this direction decoupling, we examine two numerical methods which differ only in that one
uses direction decoupling while the other does not. We examine a generalized form of Pullin’s equilibrium flux method
(EFM) [D.I. Pullin, Direct simulation methods for compressible ideal gas flow, J. Comput. Phys. 34 (1980) 231–244] which
we have called the true direction equilibrium flux method (TDEFM). The TDEFM fluxes, derived from kinetic theory,
flow not only between cells sharing an interface, but ultimately to any cell in the grid. TDEFM is used here to simulate
a blast wave and an imploding flow problem on a structured rectangular mesh and is compared with results from direction
decoupled EFM. Since both EFM and TDEFM are identical in the low CFL number limit, differences between the results
demonstrate the detrimental effect of direction decoupling. Differences resulting from direction decoupling are also shown
in the simulation of hypersonic flow over a rectangular body. The computational cost of allowing the EFM fluxes to flow
in the correct directions on the grid is minimal.
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1. Introduction

Bird’s Direct Simulation Monte Carlo (DSMC) method [5] simulates a rarefied flow by following the
motion and collisions of a large number of simulator particles as they move through the flow. DSMC in
the high collision rate limit has been used as an Euler solver [1,6–8] and as the ‘continuum’ part of a hybrid
DSMC/continuum solver. DSMC is generally more robust than a conventional Euler solver but suffers from
statistical scatter which requires large amounts of CPU power to reduce to acceptable limits. One reason for
DSMC’s stability is that the fluxes of mass, momentum and energy are carried by particles which move in the
physically correct directions; in any time step fluxes may flow from any cell to any other cell in the computa-
tional domain.

In continuum solvers the fluxes are typically ‘direction decoupled’; one dimensional flux calculations are
performed in the direction normal to the interface between two cells, and the fluxes are only exchanged with
cells that share an interface. For example, on a 2D structured grid the fluxes flow in two coordinate directions
and never flow in one time step between cells which are diagonally contiguous (share a vertex in common) but
do not have a common interface. Cook [9] shows that when the cell structure is not well aligned with the phys-
ical structures in the flow, direction decoupled methods may produce non-physical results such as negative
temperatures or densities where strong shocks occur or interact. These solvers may also produce asymmetrical
results where symmetrical results are theoretically required.

This phenomenon can be demonstrated through the solutions of radially imploding or exploding flows on
rectangular meshes. Fig. 1 shows the computational domain and the initial condition in which there is a low
pressure cylindrical region surrounded by a high pressure region with a sharp discontinuity between the two. A
cylindrically symmetric shock wave will propagate toward the center, causing an increase in temperature and
density as the shock travels inwards. The figure also shows density contours found using three existing direc-
tion decoupled methods. It can be seen that the direction decoupled methods give asymmetrical results.

Pullin [1] proposed the equilibrium flux method (EFM) in which the fluxes carried by particles having veloc-
ities conforming to the local Maxwell–Boltzmann distribution were calculated analytically for the limit of an
infinite number of particles. EFM eliminates the statistical scatter associated with the effectively equivalent
particle flux methods. When EFM was used in 2D and 3D flows [10–13] the conventional direction decoupling
approach described above was used. A 1D solution using EFM to calculate fluxes between cells is presented in
Fig. 2. Viscous effects are ignored, although the numerical viscosity inherent to EFM is present. Fig. 2 also
shows the radially symmetric density contours as constructed from the 1D solution corresponding to the con-
ditions and elapsed time used in the direction decoupled results shown in Fig. 1.

Since the EFM fluxes are just the amounts of mass, momentum and energy transported by molecules in
free-molecular flight there is no need, other than for simplicity, to use direction decoupling when EFM is
applied in two or three dimensions. The true direction equilibrium flux method [3,4] represent the analytical
expressions for the fluxes carried by molecules originating in a rectangular cell with velocities selected from the
Maxwell–Boltzmann distribution and moved in free-flight in a specified time of flight to any rectangular
region. One-dimensional TDEFM fluxes are equivalent to EFM fluxes when the CFL number approaches
zero. In this limit, the only difference between TDEFM and EFM exists in higher dimensions when EFM
is direction decoupled while TDEFM is not. The TDEFM flux expressions are the analytical equivalent to
Macrossan et al.’s particle flux method (PFM) [15] applied to rectangular cells.

Here we compare TDEFM results to those obtained from direction decoupled EFM for a 2D implosion
problem and a 2D blast wave problem. These differences are then further demonstrated in the simulation
of hypersonic flow over a rectangular body. The aim of the paper is to examine the effects of direction coupling
alone, thus both methods are restricted to first order accuracy in space and time, using identical grids with
identical time steps. Since both solvers share the same underlying principles and differ only in the direction
decoupling aspect, results show the detrimental effects due to direction decoupling.

2. Derivation of TDEFM flux expressions

Below are the expressions for the mass, momentum and energy carried by molecules in free-molecular flight
for time Dt, starting from a rectangular region (in 2D) to any other rectangular region. All forces acting on
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Fig. 1. Direction decoupled 2D solutions to the implosion problem using a 50 � 50 mesh shown in Fig. 2: (top left) initial condition; (top
right) EFM; (lower left) Godunov method [2]; (lower right) Van Leer [14]. Contours are of density (q=qL) with contours every 0.5. Flow is
shown at t

ffiffiffiffiffiffiffiffiffi
RT L
p

=r ¼ 0:098 after 100 time steps. Initial conditions are c ¼ 9=7; T H=T L ¼ 1:0;qH=qL ¼ 10. Computational domain lies in the
square region 0 < x=r < 2.
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particles are assumed to be zero, i.e. no particle interactions occur while particles are moving. Uniform con-
ditions are assumed within the cell from which the molecules originate (i.e. there are no gradients of density,
mean velocity or temperature within the cell) and all the molecules within the cell have velocities conforming
to the same Maxwell–Boltzmann distribution:
gðvjÞ ¼
1ffiffiffiffiffiffi
2p
p

s
exp

�ðvj � mjÞ2

2s2

 !
; ð1Þ
where s ¼ ðRT Þ0:5;mj is the bulk velocity and vj the velocity in the direction j. Referring to Fig. 3, the prob-
ability of a particle from location x falling in the region between xl and xr in the time Dt is
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Fig. 2. (Left) Finite volume representation for a 1D simulation showing momentum correction. (Right) Reconstructed 2D solution to the
implosion problem using 1D-EFM. Flow is shown at t
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Fig. 3. Particle moving from the source region at x (xL P x P xR) to the destination region between xl and xr.
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where the values of Mc;M1 �M5 are located in the Appendix. It is clear that fM represents the total fraction of
mass between the region between xL and xR to move into the region between xl and xr, and is therefore the
mass flux per unit mass from the source region.

The mean velocity of particles from location x to land in the region between xl and xr, found by taking the
moment of the velocity distribution function, is
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The mean average velocity of particles (or the average momentum per unit source mass) moving into region
xl $ xr from region xL $ xR is
fP ¼
1

ðxR � xLÞ

Z xR

xL

P p dx ¼ fP ðm; s;Dt; xR; xL; xl; xrÞ

¼ P c exp
�ðmDt þ xR � xlÞ2

2s2Dt2

 !
þ P 1erf

mDt þ xR � xlffiffiffi
2
p

sDt

� �
� P c exp

�ðmDt þ xR � xrÞ2

2s2Dt2

 !

� P 2erf
mDt þ xR � xrffiffiffi

2
p

sDt

� �
� P c exp

�ðmDt þ xL � xlÞ2

2s2Dt2

 !
� P 3erf

mDt þ xL � xlffiffiffi
2
p

sDt

� �

þ P c exp
�ðmDt þ xL � xrÞ2

2s2Dt2

 !
þ P 4erf

mDt þ xL � xrffiffiffi
2
p

sDt

� �
; ð3Þ
where the values of P c; P 1 � P 5 are located in the Appendix. The energy carried by a particle, in any single
simulated direction, can be divided into a kinetic energy and internal energy:
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where C is the internal energy per simulated degrees of freedom f, thus f ¼ 2 in a 2D simulation. This ‘internal
energy’ includes contributions from rotation and vibration, as well as contributions from unused translational
degrees of freedom as proposed by Pullin [1]. Therefore, there is no limit upon which value of c can be used.
Therefore, the mean energy of particles (per unit mass) moving from x into the region between xl and xr; P e; is
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The mean energy over the range xL to xR to flow into the region between xl and xr is
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where the values of Ec;E1 � E5 are located in the Appendix. These fluxes expressions are first order accurate in
time and space – this is done to ensure fair comparison with the EFM fluxes. Higher order implementations of
TDEFM may be implemented though:

� The application of a normalised, linearly varying flow properties e.g. qðxÞ (qðx; yÞ in higher dimensions)
prior to integration over the source region. This is then integrated over the source volume to determine
the fluxes of mass, momentum and energy per unit mass. There are currently analytical expressions avail-
able when density and velocity gradients are applied this way [4].
� The application of arbitrarily selected reconstructions of flow properties to provide improved estimates of

conditions at the volume boundaries can be used to calculate pseudo-direction coupled fluxes. These con-
ditions are used to calculate one-dimensional fluxes which are then transported to all neighbouring cells,
including those diagonally adjacent.

Other flow properties can be applied to the flux calculation procedure in the same way. Careful selection of
the function qðx; yÞ allows mathematical splitting of the expressions [4]. While this is not difficult to achieve, it
is beyond the scope of investigating the effects of direction decoupling and will not be investigated here.
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3. TDEFM fluxes in the low CFL number limit

Instead of using a region of finite width into which the fluxes flow (as used in Eqs. (2)–(4)), we can use a
right-hand bound infinitely far away from the source region and take the limit Dt! 0.

Using Eq. (2), with the right-hand side of the destination region xr set to 1, now becomes
Fig. 4.
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The actual mass to move from the source region to the destination region per unit time per unit area is
M ¼ MofM
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This equation is identical to the EFM mass flux. Likewise treatment of momentum and energy fluxes also pro-
vide the EFM fluxes in the small time step limit. The difference between the EFM and TDEFM fluxes only
becomes significant when the kinetic CFL number is larger than 1. The kinetic CFL number is defined here as
CFL ¼ ðjmj þ rsÞDt
Dx

; ð9Þ
where r is a selected number of variances of the equilibrium distribution. At a CFL of 0.1, with r ¼ 5, used as
an upper limit throughout this paper, the maximum difference between the density profiles found in a simple
1D test (shown in Fig. 4) is 1e�13%. At a kinetic CFL number of 1, this difference increases to 1.5%. We there-
fore conclude that the use of the simplified of TDEFM in the low CFL number limit is justified.
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4. Implementation of TDEFM in two and three dimensions

Referring to Fig. 5, the net flux of mass, momentum and energy to move from the source region to the des-
tination region is
Fig. 5
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where M ; P and E are the net mass, momentum and energy fluxes respectively, M0 is the initial mass in the
source region, and ð½xL; yL�; ½xR; yR�Þ give the size and location of the rectangular source region,
ð½xl; yl�; ½xr; yr�Þ describe the size and location of the destination region, U is the X velocity, V is the Y velocity,
M is the net mass flux, P x and P y are the X and Y momentum fluxes and E is the energy flux. For the extension
to 3D, the process is very simple. The fluxes of mass, momentum and energy from the source cell to the des-
tination cell, shown in Fig. 6, is
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;

Ey ¼ M0fM U ;
ffiffiffiffiffiffiffi
RT
p

;Dt; xR; xL; xl; xr

	 

� fE V ;

ffiffiffiffiffiffiffi
RT
p

;Dt; yR; yL; yl; yr

	 

;�fM Z;

ffiffiffiffiffiffiffi
RT
p

;Dt; zR; zL; zl; zr

	 

;

Ez ¼ M0fM U ;
ffiffiffiffiffiffiffi
RT
p

;Dt; xR; xL; xl; xr

	 

� fM V ;

ffiffiffiffiffiffiffi
RT
p

;Dt; yR; yL; yl; yr

	 

;�fEðZ;

ffiffiffiffiffiffiffi
RT
p

;Dt; zR; zL; zl; zrÞ;

E ¼ Ex þ Ey þ Ez:
Significant simplifications of these flux expressions can be performed when the computational domain is a sim-
ple cartesian mesh, as displayed in Fig. 7. To calculate the mass fluxes from the source cell (in the region
xL P x P xR; yL P y P yR) to all surrounding cells, only four total evaluations of fM are required. The flux
calculation procedure for the mass fluxes is

(1) Calculate values of fN ; fS ; fE and f W . In this instance, these values are
fN ¼ fM V ;
ffiffiffiffiffiffiffi
RT
p

;Dt; yR; yL; yR; yr

	 

;

fS ¼ fM V ;
ffiffiffiffiffiffiffi
RT
p

;Dt; yR; yL; yl; yL

	 

;
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fE ¼ fM U ;
ffiffiffiffiffiffiffi
RT
p

;Dt; xR; xL; xR; xr

	 

;

fW ¼ fM U ;
ffiffiffiffiffiffiffi
RT
p

;Dt; xR; xL; xl; xL

	 

:

If we assume that (i) the local CFL is small, and (ii) that all of the mass is captured in the surrounding
cells, the expressions for these fluxes simplify to Pullin’s EFM fluxes, requiring only a single erf( ) and
exp( ) function evaluation each.
(2) Making use of the above assumptions, the fluxes of mass to the surrounding neighbours are
MNW ¼ M0 � fN � fW ;

MN ¼ M0 � fN � ð1� fW � fEÞ;
MNE ¼ M0 � fN � fE;

MW ¼ M0 � ð1� fN � fSÞ � fW ;

ME ¼ M0 � ð1� fN � fSÞ � fE;

MSW ¼ M0 � fS � fW ;

MS ¼ M0 � fS � ð1� fW � fEÞ;
MSE ¼ M0 � fS � fE:
This procedure can be repeated for the momentum and energy fluxes. This procedure reduces the compu-
tational expense significantly, with this form of TDEFM requiring 10% more computational time that ordin-
ary EFM. If required, the ‘‘cell catchment” region could be increased to include more distant cells; however
this would mean that the flow might posses an artificially large mean free path. In hypersonic flow, if the bulk
velocity in a cell is larger than 3

ffiffiffiffiffiffiffi
RT
p

, the contribution from cells downstream would be negligible and can be
disregarded. In the results presented here, the time step is limited to ensure that all of the mass is captured in
the surrounding 8 cells and the reduced form of the TDEFM flux expressions are used. To demonstrate the
effect of direction decoupling, a strictly uniform cartesian grid is used. The implementation of TDEFM on
non-rectangular grids is beyond the scope of this investigation.
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5. Blast wave problem

The flow field contains a two-dimensional ‘blast wave’ caused by an initial small region with a temperature
higher than the surrounding gas. One quarter of a square plane of unit width with symmetry condition applied
on all four walls is used. The length of computational domain is 50r in each direction, where r is the radius of
the high temperature region. The initial conditions are
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where q0 is the density, T H is the temperature inside the ideal circular initial condition, T L is the temperature
outside. The fraction of the area of each cell inside the high temperature region is given by f, and is demon-
strated in Fig. 8. The ratio chi is used to ensure that, regardless of mesh density, the initial computational do-
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main possesses the same total energy. This initial high temperature (and hence pressure) in the one cell sim-
ulates a sudden ‘explosion’ centered on the origin. Ideally, the resulting flow is radially symmetric. The unstea-
dy simulation is run to time t

ffiffiffiffiffiffiffiffiffi
RT L
p

=r ¼ 0:00196 where the expanding shock wave has traveled to just beyond
22r. Although the method disregards viscous effects, the same numerical viscosity present in EFM is present in
TDEFM.
Fig. 10. Angle of deviation for 2D-TDEFM and 2D-EFM for each cell versus radial position in the blast wave problem. (Top) 50 � 50
cells, (Bottom) 400 � 400 cells. Simulations are run up to t

ffiffiffiffiffiffiffi
RT
p

=r ¼ 0:00196. Each point represents the angle of deviation (i.e. the angular
difference between the radial position vector and the velocity vector) for a given cell.
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The benchmark result is obtained from a 1D-EFM solution using the initial condition described in
Fig. 8(a). The length of the circular region was divided radially into 800 cells and the simulation run up to
t
ffiffiffiffiffiffiffiffi
RT o
p

=r ¼ 0:00196 using 1000 time steps. The benchmark results are represented as solid lines in Fig. 9. Rep-
resentations of the initial circular starting condition are shown in Fig. 8(a). Fig. 9 shows the normalised den-
sity for the 2D-TDEFM and 2D-EFM results for a mesh using 50 � 50 cells and 400 � 400 cells. The expected
features of this flow are present in both results – an increase in Mach number, density and temperature occur
through the radially expanding shock. The flow is smeared due to the inability of the solvers to accurately cap-
ture the flow on a coarse mesh, though this smearing diminishes as the mesh density increases. Since the flow is
expected to display radial symmetry there is a single correct value for temperature, density and Mach number
at any given radius. It can be seen that this is not true for the numerical solution – indeed, the degree of scatter
in these profiles is an indication of the error of the solution and has been used as such previously [3].

In order to quantify the effect of direction decoupling, we use an ‘‘angle of deviation”, designated as h, to
measure the radial symmetry present in the solution. The angle of deviation is defined as the angle between the
radial position vector~r ¼ ðxi þ yjÞ and the velocity vector~v ¼ ðV xi þ V y jÞ, and is given by
1

1

D
E

N
S

IT
Y

ρ/
ρ L

Fig. 11
50 � 5
t
ffiffiffiffiffiffiffi
RT
p

=

h ¼ cos�1 ~v �~r
j~rjj~vj

� �
: ð11Þ
This angle should be zero because of the radially symmetric nature of the flow. The magnitude of h at any
position is a measure of radial asymmetry in the flow and therefore a measure of error. Fig. 10 shows that
deviation angle h taken from the 2D-EFM and 2D-TDEFM results with meshes of 50 � 50 and 400 � 400
cells. It is clear that the angle of deviation is consistently less for TDEFM than for EFM, indicating a higher
level of fidelity. This fact remains true regardless of mesh density - simulations using much finer meshes (�2
million cells) have revealed that the magnitude of the angle of deviation is always lower in TDEFM results
than in EFM results. Therefore, there is always an effect due to direction coupling, regardless of mesh density,
although this effect diminishes as mesh density increases.

6. Implosion problem

TDEFM has been compared to EFM in a 2D implosion problem with the aim of demonstrating the prob-
lems associated with direction splitting. The implosion problem is shown in the introduction in Fig. 1. The
initial conditions are as follows:
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q ¼ vqH ;

v ¼ f þ ð1� f Þ qL

qH

;

T H=T L ¼ 1;
2. Angle of deviation for 2D-TDEFM and 2D-EFM in the implosion problem. (top) 50 � 50 cells, (bottom) 400 � 400 cells.
tions are run up to t

ffiffiffiffiffiffiffi
RT
p

=r ¼ 0:098. Each point represents the angle of deviation (i.e. the angular difference between the radial
n vector and the velocity vector) for a given cell.
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U ¼ V ¼ 0;

c ¼ 5

3
; ð12Þ
where f is the fraction of the cell falling outside radius r. The results from 2D-TDEFM and 2D-EFM using
a 50 � 50 and 400 � 400 mesh are shown in Fig. 11. As expected, the fine mesh results more closely match
the 1D results. The angle of deviation is used again as a measure of radial asymmetry and is shown in
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Fig. 12. The angle of deviation is the angular difference between the radial position vector and the velocity
vector for any given cells. Fig. 12 shows that 2D-TDEFM gives a more radially symmetric result than 2D-
EFM on the same mesh. Shown in Fig. 13 is a comparison of density contours between 2D-EFM and 2D-
TDEFM for the same initial conditions used to obtain the results in Fig. 1. The 2D-TDEFM contours are
closer to being radially symmetric than the 2D-EFM contours, confirming the result obtained through the
analysis of the angle of deviation. The time step used was small enough to justify the simplification of the
primary TDEFM flux expressions in Eqs. (2)–(4) to the original EFM expressions. At this time step, the
direction coupled EFM provided identical results (differences of less than 1e�13%) to the complete
TDEFM expressions while performing the same number of exponential and error function evaluations
as direction decoupled EFM.

7. Hypersonic flow over a rectangular body

The previous examples dealt with predominately low speed, unsteady flows in a square region. The
results for steady hypersonic flow over the rectangular body shown in Fig. 14 are shown here. The flow
conditions are M1 ¼ 20; q1 ¼ 1 and T1 ¼ 1. The flow is progressed until t

ffiffiffiffiffiffiffiffiffiffi
RT1
p

=H ¼ 3. The gas is ideal
with c ¼ 7=5. Density contours of the result obtained using TDEFM is shown in Fig. 15. The top and
right-hand side boundaries are extrapolated outflow. The lower boundary and the body surfaces are reflec-
tive boundaries which are appropriate for this inviscid calculation. As expected, a detached bow shock has
formed, with the density increasing through the bow shock and decreasing as the flow expands around the
corner of the rectangular body. There are no bumps or other spurious oscillations present in the bow
shock.

The temperature and density profiles alone line A–A0 (shown in Fig. 14) are shown in Fig. 16. Here, we
can see that even for steady flow problems there is a distinct difference in the solutions. The location at
which the detached bow shock crosses the line A–A0 differs for true direction and direction decoupled
fluxes. This is true regardless of mesh density. As shown by the density profile in Fig. 16, when the number
0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x/H

y/
H

6

5

4

3 2

1

Fig. 15. Colour contours of density for hypersonic flow over a rectangular body of height H using TDEFM. The computational region
extends to 4H , with the front of the body located at ½2:5H ; 0�. Flow is at Mach 20 with c ¼ 1:4. Initial conditions are
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of cells is increased by more than 400% there is still a noticeable difference in the location of the bow
shock. The effect of direction decoupling here is quite severe as the flow is not aligned with the grid.
The temperature profile in Fig. 16 extends from 1 P y=H P 2:5 (along the line A–A0 shown in Fig. 14)
2.5

3

3.5

4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ρ/ρ∞

y/
H

EFM (3255 cells)
TDEFM (3255)
EFM (13025 cells)
TDEFM (13025 cells)

1.2

1.4

1.6

1.8

2

2.2

2.4

40 45 50 55

y/
H

T/T∞

EFM (3255 cells)
TDEFM (3255)
EFM (13025 cells)
TDEFM (13025 cells)
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results shown are alone line A-A’ as shown in Fig. 14. The temperature profile is in the region (1 P y=H P 2:5). The density profile is in
the region (2:5 P y=H P 4). Flow is at Mach 20 with c ¼ 1:4. Initial conditions are q ¼ q1;M ¼ M1 and T ¼ T1. The simulations are
progressed in time to t

ffiffiffiffiffiffiffiffiffiffi
RT1
p

=H ¼ 3.



Table 1
Shock standoff distances for varying computational grids

Method Number of cells Standoff distance Relative shock
D=H Standoff distance

TDEFM 3255 1.118 1
EFM 3255 1.185 1.06
EFM 3596 1.163 1.04
TDEFM 13,050 1.0195 1
EFM 13,050 1.05 1.03
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where the flow is closer to the body and better aligned with the computational grid. The results demon-
strate that the difference between the methods decreases where the flow is better aligned with the grid.
As the flow direction diverges from grid alignment, i.e. as the distance y=H increases along line A–A0,
the difference between the results is shown to increase.

As may be expected, the shock stand off distance is also affected. Presented in Table 1 are the shock standoff
distances using TDEFM and EFM with varying mesh densities. The shock standoff distance is defined here as
the location along y ¼ 0 where the mach number equals unity. Since TDEFM (in its simplified form) is typ-
ically 10% computationally slower than EFM, tests were performed using EFM with a correspondingly larger
number of cells. While the results improve slightly, the difference between the results is still significant. In
terms of the shock standoff distance, increasing the number of cells from 3522 to 3596 decreased the difference
in normalised shock standoff distance from 6% to 4%. Similar trends were shown with increasing mesh den-
sities. Therefore, we conclude that the benefits of direction coupling outweigh the slight increase in computa-
tional expense.
8. Conclusion

Direction decoupling is defined here as the procedure used by finite volume solvers in CFD where 2D flow
problems are solved by a series of one-dimensional fluxes, calculated by finding normal components to a cell
interface. These fluxes are only exchanged between cells sharing a common interface, ignoring other physically
realistic flows to adjacent cells not sharing an interface.

In order to show the effects of direction decoupling, the implementation of TDEFM on a structured, uni-
form rectangular mesh has been investigated and compared to the direction decoupled equilibrium flux
method (EFM). These two methods are identical for small time steps and differ only in the fact that TDEFM
is direction coupled while EFM is not. The methods were compared by simulating a blast wave problem and
an implosion problem, for which the solution is expected to be radially symmetric. All simulations have been
restricted to first order in space and time. The deviation of the solutions from axisymmetry is an indication of
the errors associated with the different flux methods. This deviation was quantified by the angle between the
radial position vector and the flow velocity vector for any point in the flow.

Results show that on a structured, uniform rectangular mesh TDEFM captures flows with significantly
greater accuracy, as measured by flow symmetry, than the comparable direction decoupled method on the
same mesh. TDEFM was then applied to a steady hypersonic flow problem, showing that the detached
bow shock was moved further away from the body as a direct result of direction decoupling. The steady flow
problem also demonstrated that the effects of direction decoupling do not disappear in the steady flow limit.
We conclude that the direction decoupling of the fluxes in 2D flows can have significant detrimental effects in
the accuracy of the solutions.
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Appendix A. TDEFM Flux expression coefficients

Mass coefficients
Mc ¼
sDt

ðxR � xLÞ
ffiffiffiffiffiffi
2p
p ;

M1 ¼
1

2ðxR � xLÞ
ðmDt � xl þ xRÞ;

M2 ¼
1

2ðxR � xLÞ
ðmDt � xr þ xRÞ;

M3 ¼
1

2ðxR � xLÞ
ðmDt � xl þ xLÞ;

M4 ¼
1

2ðxR � xLÞ
ðmDt � xr þ xLÞ:
Momentum coefficients
P c ¼
msDt

ðxR � xLÞ
ffiffiffiffiffiffi
2p
p ;

P 1 ¼
1

2ðxR � xLÞ
ðmðmDt � xl þ xRÞ þ s2DtÞ;

P 2 ¼
1

2ðxR � xLÞ
ðmðmDt � xr þ xRÞ þ s2DtÞ;

P 3 ¼
1

2ðxR � xLÞ
ðmðmDt � xl þ xLÞ þ s2DtÞ;

P 4 ¼
1

2ðxR � xLÞ
ðmðmDt � xr þ xLÞ þ s2DtÞ:
Energy coefficients
Ec ¼
ð2C þ m2 þ 2s2ÞsDt

2ðxR � xLÞ
ffiffiffiffiffiffi
2p
p ;

E1 ¼
1

4ðxR � xLÞ
ðm2 þ s2 þ 2CÞðmDt � xl þ xRÞ þ 2ms2Dt
� �

;

E2 ¼
1

4ðxR � xLÞ
ðm2 þ s2 þ 2CÞðmDt � xr þ xRÞ þ 2ms2Dt
� �

;

E3 ¼
1

4ðxR � xLÞ
ðm2 þ s2 þ 2CÞðmDt � xl þ xLÞ þ 2ms2Dt
� �

;

E4 ¼
1

4ðxR � xLÞ
ðm2 þ s2 þ 2CÞðmDt � xr þ xLÞ þ 2ms2Dt
� �

:
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